

Type DAD 141.1

Technical Manual Modbus Communication

Firmware Version 141.181.v.1.06 or higher Hardware Version 141.10x.v.1.01 Document No. E223-1 Rev. 2.2 EN

1. How to use Modbus in DAD 141.1

1.1. Implemented functions for Modbus RTU and Modbus TCP.

- > 0x03 Read holding registers: Used for reading 16 or 32bit values.
- > 0x04 Read input registers: Same as above.
- > 0x06 Write single register: Used for writing 16bit values.
- > 0x10 Write multiple registers: Used for writing 32bit values.

1.2. Modbus RTU

- > The baudrate must be set in menu 8.1.
- In multidrop or 2 wire applications the user must select "485" in menu 8.2 or "422" for point to point 4 wire applications.
- > A Modbus address between 1 and 247 must be set in menu 8.3.
- The parity used in the actual Modbus network must be selected in menu 8.7 (select **no** or **o** = odd or **e** = even).
- > The Modbus RTU mode must be selected in menu 8.8 (select **RTU**).

1.3. Modbus Protocols

- 1.3.1. Modbus RTU via Serial Port
 - binary data protocol
- 1.3.2. Modbus TCP via Ethernet Port:
 - > binary data protocol, embedded in TCP/IP packages
 - > Modbus TCP port: 502
 - > IP address is 192.168.0.100 (factory default)

1.4. Modbus Index Tables

See the following pages.

Index (hex)	Туре	Size	Access	Function	
2000	Float	2	R	Gross Weight	This Index returns the latest Gross value obtained from a DAD141. The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2 16-bit registers from index 2000. The Gross Weight are also sent when reading multiple DAD141 data at index 3500. see also command description: GG get gros value
2002	Float	2	R	Net Weight	This Index returns the latest Netto value obtained from a DAD141. The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2 16-bit registers from index 2002. The Netto Weight are also sent when reading multiple DAD141 data at index 3500. see also command description: GN get net value
2008	Float	2	R	Average Weight	This Index returns the latest average weight value obtained from a DAD141. The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2 16-bit registers from index 2008. see also command description: GA get average value
2020	Int32	2	R	Gross Weight	This Index returns the Gross weight value obtained from a DAD141. The 32 bit integer data is obtained by reading 2 16-bit registers from index 2020. The Gross Weight are also sent when reading multiple DAD141 data at index 3300. see also command description: GG get gros value
2022	Int32	2	R	Net Weight	This Index returns the Netto weight value obtained from a DAD141. The 32 bit integer data is obtained by reading 2 16-bit registers from index 2022. The Netto Weight are also sent when reading multiple DAD141 data at index 3300. see also command description: GN get net value
2028	Int32	2	R	Average Weight	This Index returns the latest average weight value obtained from a DAD141. The 32 bit integer data is obtained by reading 2 16-bit registers from index 2028. see also command description: GA get average value
202A	Int32	2	R	A/D Sample	This Index returns the current ADC value obtained from a DAD141. The 32 bit integer data is obtained by reading 2 16-bit registers from index 202A. see also command description: GS get sample
202C	Int32	2	R	Device ID	 This Index returns the current ID of a DAD141. The 32 bit integer data is obtained by reading 2 16-bit registers from index 202C. The the high word (202C) are 0(zero) and the low word (202D) should be split into two bytes: 1. Byte is the minor ID, normally 10h (16d). 2. Byte is the major ID, normally 14h (20d). see also command description: ID identification device

Index (hex)	Туре	Size	Access	Function	Description
202E	Int32	2	R	Firmware Version	This Index returns the current Firmware version of a DAD141.
					The 32 bit integer data is obtained by reading 2 16-bit registers from index 202E.
					The the high word (202E) are 0 (zero) and the low word (202F) should be split into two bytes:
					1. Byte is the minor IV, e.g. 02h (02d).
					2. Byte is the major IV, e.g. 17h (23d).
					see also command description: IV Firmware Version
2030	Int32	2	R	Device Status	This Index returns the current Status for a DAD141.
					The 32 bit integer data is obtained by reading 2 16-bit registers from index 2030.
					see also command description: IS Device Status
2034	Int32	2	R	Serial Number	This Index returns the serial number of the DAD141.
					The 32 bit integer data is obtained by reading 2 16-bit registers from index 2034.
					see also command description: RS Read Serial Number
2060	Int16	1	R	Qualifier	This Index returns the latest Qualifier value obtained from a DAD141.
					The 16 bit integer data is obtained by reading one 16-bit registers at index 2060.
					The Qualifier bit values are:
					0001h - Under range
					0002h - Over range
					0010h - No motion, still stand, steady state
					0020h - Tare set
					0100h - Set-point 0 (source>limit)
					0200h - Set-point 1
					0400h - Set-point 2
					The Qualifier word are also sent when reading multiple DAD141 data at index 3300 or 3500.
2061	Int16	1	W	Bit Commands	This Index is used to set or reset Zero, Tare or Max / Valley / Peak2Peak.
					The 16 bit integer data is accessed by writing one 16-bit register at index 2061.
					see also command description:
					01h: RZ Reset Zero
					02h: SZ Set Zero
					04h: RT Reset Tare
					08h: ST Set Tare
					10h: RM Reset Max
					20h: TH Trigger Hold
2062	Int16	1	W	Trigger	This Index is used to trigger measurements in the DAD 141.1.
					The 16 bit integer data is accessed by writing one 16-bit register at index 2062.
					The value 0080h starts the triggered measurement.
					see also command description: TR Software Trigger

Index (hex)	Туре	Size	Access	Function	Description
2066	Int16	1	W	Save in EEPROM	This Index is used to Initiate writing to the DAD141 EEPROM.
					The 16 bit integer data is accessed by writing one 16-bit register at index 2066. The values are:
					0001h: AS Save analog parameters
					0002h: CS Save calibration
					0004h: WP Save general setup parameters
					0010h: SS Save set-point parameters
					8000h: FD Factory default
2067	Int16	1	RW	SetPoint	This Index is used to select Setpoint in a DAD141.
				Selection	The 16 bit integer data is accessed by writing one 16-bit register at index 2067.
					The values are 0 (zero) to 2 and selects the setpoint acted upon by indexes:
					2068h,206Ah, 206Ch and 2070h.
					This index act as the 'n' parameter for the A'n', H'n', S'n' and P'n' commands
					see also command description: A'n' Assign action, H'n' Hysteresis, S'n' Setpoint, P'n' Polarity
2068	Int32	2	RW	SetPoint Source	This Index is used to select Setpoint Source in a DAD141.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2068.
					0 = Gross weight as setpoint source
					1 = Net weight as setpoint source
					2 = Peak value (Max) as setpoint source
					3 = Average value as setpoint source
					4 = Hold value as setpoint source
					5 = Peak to Peak value as setpoint source
					6 = Valley value (Min.) as setpoint source
					7 = Error 4 or 5 as setpoint source
					see also command description: A'n' (n = 0, 1, 2, 3, 4, 5, 6, 7, 8)
206A	Int32	2	RW	SetPoint	This Index is used to get or set Setpoint Hysteresis in a DAD141.
				Hysteresis	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 206A.
					see also command description: H'n' (n = 0, 1, 2)
206C	Int32	2	RW	SetPoint Value	This Index is used to get or set Setpoint limit in a DAD141.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 206C.
					see also command description: $S'n'$ (n = 0, 1, 2)
2070	Int32	2	RW	SetPoint Polarity	This Index is used to get or set Setpoint polaritiy in a DAD141.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2070.
					The values of switch logic are 0 or 1.
					see also command description: $\mathbf{P'n'}$ (n = 0, 1, 2)

Index (hex)	Туре	Size	Access	Function	Description
2074	Int16	1	RW	Logic Input	This Index is used to get or set Logic Input Function in a DAD141.
				Select	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2074.
					The values of the function are 0 or 1.
					see also command description: AI'n', 'm' (n = 0 or 1) Assign Input.
2076	Int16	1	RW	Assign Logic	This Index is used to get or set Logic Input Function in a DAD141.
				Input	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2074.
					The values of the function are 00 to 15.
					see also command description: AI'n', 'm' (m = 0 15) Assign Input
2080	Float	2	R	Peak Value	This Index returns the latest peak value obtained from a DAD141.
					The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2
					16-bit registers from index 2080. See also command description: GM Get Peak Value
2082	Int32	2	R	Peak Value	This Index returns the peak value of the DAD141.
					The 32 bit integer data is obtained by reading 2 16-bit registers from index 2082.
					see also command description: GM Get Peak Value
2084	Float	2	R	Hold	This Index returns the latest hold value obtained from a DAD141.
					The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2
					16-bit registers from index 2084. See also command description: GH Get Hold Value
2086	Int32	2	R	Hold	This Index returns the hold value of the DAD141.
					The 32 bit integer data is obtained by reading 2 16-bit registers from index 2086.
					see also command description: GH Get Hold Value
2088	Float	2	R	Valley Value	This Index returns the latest valley value obtained from a DAD141.
					The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2
		_	_		16-bit registers from index 2088. See also command description: GV Get Valley Value
208A	Int32	2	R	Valley Value	This Index returns the valley value of the DAD141.
					The 32 bit integer data is obtained by reading 2 16-bit registers from index 208A.
	_		_		see also command description: GV Get Valley Value
208C	Float	2	R	Peak to Peak	This Index returns the latest valley value obtained from a DAD141.
				Value	The format is IEEE754 Single precision floating point format. The 32 bit data is obtained by reading 2
			_		16-bit registers from index 208C. See also command description: GO Get Peak Value
208E	Int32	2	R	Peak to Peak	This Index returns the peak value of the DAD141.
				Value	The 32 bit integer data is obtained by reading 2 16-bit registers from index 208E.
					see also command description: GO Get Peak Value
2100	Int32	2	RW	Analog Action	This Index is used to select Analog Output Source.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2100.
					The values of the analog action are 0 to 8.
					see also command description: AA Analog output source

Index (hex)	Туре	Size	Access	Function	Description
2102	Int32	2	RW	Analog High	This Index defines the weight value for the high analog output.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2102.
					see also command description: AH Analog High
2104	Int32	2	RW	Analog Low	This Index defines the weight value for the low analog output.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2104.
					see also command description: AL Analog Low
2106	Int32	2	RW	Filter Setting	This Index is used to select the filter setting.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2106.
					The values of the low pass filters are 0 to 7.
					see also command description: FL Filter Value
210A	Int32	2	RW	Logic Output	This Index Reads/Modify the status of the physical output signals.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 210A.
					see also command description: IO Status of the logic Output
210C	Int32	2	R	Logic Input	This Index reads the status of the physical input signals.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 210C.
					see also command description: IN Read status of logic Input
210E	Int32	2	RW	Measuring Time	See index 2410
2110	Int32	2	RW	Filter Mode	This Index chooses the filter mode, permitted values are "0" for IIR and "1" for FIR.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2110.
					see also command description: FM Filter Mode
2112	Int32	2	RW	No Motion Range	This Index Reads/Modify the maximum number of counts allowed as no motion.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2112.
					see also command description: NR No Motion Range
2114	Int32	2	RW	No Motion Time	This Index Reads/Modify the minimum time the weight must stay within NR to be no motion.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2114.
					see also command description: NT No MotionTime
2116	Int32	2	RW	Logic Output	This Index Reads/Modify the mask of the logic Outputs.
				Mask	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2116.
					see also command description: OM Control of logic Outputs
2118	Int32	2	R	Tare Value	This Index Reads the Tare value.
					The 32 bit integer data accessed by reading 2 16-bit registers from index 2118.
					see also command description: GT Get tare value
211A	Int32	2	RW	Start Delay	See index 2412
211C	Int32	2	RW	Trigger Edge	See index 2402
211E	Int32	2	RW	Trigger Level	See index 2400

Index (hex)	Туре	Size		Function	Description
2120	Int32	2	RW	Update Rate	This Index chooses Average after the filter by 2 exp. UR samples.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2120.
					The values of the update rate are 0 to 7 ($2 \exp 0 = 1$, $2 \exp 7 = 128$).
					see also command description: UR Update Rate
2122	Int32	2	RW	Zero Tracking	This Index enables or disables the zero tracking (TAC protected).
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2122.
					The values of Zero Tracking function are 0 to 255.
					see also command description: ZT Zero Tracking
2128	Int32	2	RW	Analog Output	This Index is used for set the analog output mode.
				Mode	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2128.
					The values of the output mode are 0 to 5
					see also command description: AM Analog Output Mode
2200	Int32	2	RW	Absolute Gain	This Index Reads/Modify the absolute gain point (TAC protected).
				Calibration	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2200.
					see also command description: AG Absolute Gain
2202	Int32	2	RW	Absolute Zero	This Index Reads/Modify the absolute zero point (TAC protected).
				Calibration	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2202.
					see also command description: AZ Absolute Zero
2204	Int32	2	RW	Calibrate Enable	This Index sets the calibration functions to the enabled state.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2204.
					see also command description: CE Calibrate Enable
2206	Int32	2	RW	Calibrate Gain	This Index sets the calibration gain (span) value (TAC protected).
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2206.
					see also command description: CG Calibrate Gain
220C	Int32	2	RW	Calibrate Max	This Index Reads/Modify the maximum allowable output value (TAC protected).
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 220C.
					see also command description: CM Maximum Output
220E	Int32	2	RW	Calibrate Min	This Index Reads/Modify the minimum allowable output value (TAC protected).
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 220E.
					see also command description: CI Minimum Output
2212	Int32	2	W	Calibrate Zero	This Index sets the calibration zero point (TAC protected).
					The 32 bit integer data accessed by writing 2 16-bit registers from index 2212.
					see also command description: CZ Calibrate Zero
2214	Int32	2	RW	Decimal Point	This Index Reads/Modify the decimal point position (TAC protected).
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2214.
					see also command description: DP Decimal Point

Index (hex)	Туре	Size	Access	Function	Description
2216	Int32	2	RW	Display Step Size	This Index Reads/Modify the the display step size (TAC protected).
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2216.
					see also command description: DS Display Step Size
221E	Int32	2	RW	Initial Zero	This Index enables or disables the initial zero function @ power ON.
				@ Power ON	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 221E.
					see also command description: ZI Initial Zero ON/OFF
2220	Int32	2	RW	Zero Range	This Index selects the zero range.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 221E.
					A value of 0 enables the standard zero range of $\pm 2\%$ of maximum.
					see also command description: ZR Zero Range
2224	Int32	2	RW	Store Tare value	This Index enables or disables the tare storing in EEPROM @ power OFF.
				@ Power OFF	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2224.
					see also command description: TN Store Zero Value
2226	Int32	2	RW	Store Zero Value	This Index enables or disables the zero storing inh EEPROM @ power OFF.
				@ Power OFF	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2226.
					see also command description: ZN Store Zero Value
2400	Int32	2	RW	Trigger Level	This Index selects the trigger level.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2400.
					see also command description: TL Trigger Level
2402	Int32	2	RW	Trigger Egde	This Index selects rising or falling slope trigger.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2402.
					see also command description: TE Trigger Edge
2408	Int32	2	RW	Hold Time	This Index Reads/Modify the Hold time of setpoint S0.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2408.
					see also command description: HT Hold Time
240A	Int32	2	RW	Tare Window	This Index Reads/Modify the tare window.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 240A.
					see also command description: TW Tare Window
240C	Int32	2	RW	Tare Time	This Index Reads/Modify the tare time.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 240C.
					see also command description: TI Tare Time
2410	Int32	2	RW	Measuring Time	This Index Reads/Modify the time over which the average value will be built.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 2410.
					see also command description: MT Measure Time

Index (hex)	Туре	Size	Access	Function	Description
2412	Int32	2	RW	Start Delay	This Index Reads/Modify the delay between falling/rising edge of the trigger pulse and start of the measurement. The 32 bit integer data accessed by reading or writing 2 16-bit registers from index
					2412. see also command description: SD Start Delay
3006	Int32	2	R	MAC Hi	This Index reads the four most significant bytes of the MAC address.
					The 32 bit integer data accessed by reading 2 16-bit registers from index 3006.
3008	Int32	2	R	MAC Lo	This Index reads the two least significant bytes of the MAC address.
					The 32 bit integer data accessed by reading 2 16-bit registers from index 3008.
300C	Int32	2	RW	IP Address	This Index reads/Modify the IP Address. A change will take effect after reset.
					The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 300C.
					see also command description: NA Network Address
3300	Int32	5	R	Combined result,	This index reads the gross weight, the net weight and the qualifier.
	Int32			integer	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 3300.
	Int16				see also command description: GW Get data string "net, gross and status"
3500	Float	5	R	Combined result,	This index reads the gross weight, the net weight and the qualifier.
	Float			floating point	The 32 bit integer data accessed by reading or writing 2 16-bit registers from index 3500.
	Int16				see also command description: GW Get data string "net, gross and status"